Å². This, in turn, implies $\Delta \langle z_c^2 \rangle < 10^{-3}$ Å², which is in agreement with our experimental results.

In summary, we find no evidence of the large recoilless fraction anomaly reported by Hazony and co-workers in KFCT. Our results, in agreement with those of Gleason and Walker, place an upper limit of about 3% on the size of the anomaly near the ferroelectric transition temperature. Gleason and Walker interpret these results as excluding the possibility that the iron sublattice participates in a soft-phonon mode. We feel

that these results do not rule out this participation since the estimates presented above indicate a soft-phonon mode in KFCT should produce changes in the vibrational amplitude smaller than we are able to detect with the Mössbauer effect.

ACKNOWLEDGMENT

The author would like to thank J. Thomas for assistance in the construction and operation of the experimental apparatus.

Erratum

Stopping Powers and Ranges of 5-90-MeV S³², Cl³⁵, Br⁷⁹, and I¹²⁷ Ions in H₂, He, N₂, Ar, and Kr: A Semiempirical Stopping Power Theory for Heavy Ions in Gases and Solids, T. E. PIERCE AND M. BLANN [Phys. Rev. 173, 390 (1968)]. The constant for the exponent in the effective proton charge expression of Eq. (6) (also given in the abstract) is in error. The value given, -2.5, should be changed to -5.0. We are grateful to Dr. M. J. Fluss for bringing this error to our attention.